jueves, 1 de octubre de 2015

DENSIDAD Y PESO ESPECIFICO

DENSIDAD:
La densidad, es una de las propiedades más características de cada sustancia.
Es a masa de la unidad de volumen.
Se obtiene dividiendo una masa conocida de la sustancia entre el volumen que ocupa.
Llamando m a la masa, y v al volumen, la densidad, d, vale:
d= m/v.
Unidades.
En el Sistema Internacional la unidad de densidad es el kg (Unidad de masa) entre el m3 (unidad de volumen). Es decir, el kg/cm3
Sin embargo es muy frecuente expresar la densidad en g/cm3 (Unidad cegesimal).
PESO ESPECÍFICO.
El peso específico de una sustancia es el peso de la unidad de volumen.
Se obtiene dividiendo un peso conocido de la sustancia entre el volumen que ocupa.
Llamando p al peso y v al volumen, el peso específico, Pc, vale:
Pc= p/v
Unidades.
Sistema Internacional.
La unidad de peso específico es el N/m3; es decir, el newton (Unidad de fuerza y, por tanto, de peso) entre el m3 (Unidad de volumen).
Sistema Técnico.
Se emplean el kp/m3 y el kp/dm3.
Sistema Cegesimal.
Se utilizaría la dina/cm3, que corresponde a la unidad del sistema internacional.
RELACIÓN ENTRE EL PESO ESPECÍFICO Y LA DENSIDAD.
El peso específico y la densidad son evidentemente magnitudes distintas como se ha podido comparar a través de las deficiniones que se dieron en la parte de arriba, pero entre ellas hay una íntima relación, que se va a describir a continuación.
Se recordará que el peso de un cuerpo es igual a su masa por la aceleración de la gravedad:
P= m . g
Pues bien, sustituyendo esta expresión en la definición del peso específico y recordando que la densidad es la razon m/V, queda:
Pe= p/v= m.g /V = m/V . g = d.g
El peso específico de una sustancia es igual a su densidad por la aceleración de la gravedad.
Como hemos mencionado las unidades, la unidad clásica de densidad (g/cm3) tiene la ventaja de ser un número pequeño y fácil de utilizar.
Lo mismo puede decirse del kp/cm3 como unidad de peso específico, con la ventaja de que numéricamente, coinciden la densidad expresada en g/cm3 con el peso específico expresado en kp/dm3.
VALORES DE DENSIDADES.
Aluminio:
Densidad (kg/m3): 2698,4; (20 ºC)
Plástico:
Densidad (0,910 g/cc) plástico.
Polietileno:
El polietileno, un plástico más común, se recalienta a .160°C de los mas livianos con una densidad de 0,905 gr.
Vidrio:
Densidad= 650 °C (1200 °F).

Densidad de un líquido

La densidad es la cantidad de masa por unidad de volumen. Se denomina con la letra ρ. En el sistema internacional se mide en kilogramos / metro cúbico.


Peso específico de un líquido

El peso específico de un fluido se calcula como su peso sobre una unidad de volumen (o su densidad por g) . En el sistema internacional se mide en Newton / metro cúbico.



Densidad y Peso Específico

La densidad está relacionada con el grado de acumulación de materia (un cuerpo compacto es, por lo general, más denso que otro más disperso), pero también lo está con el peso. Así, un cuerpo pequeño que es mucho más pesado que otro más grande es también mucho más denso. 
d = densidad
d = m/v = masa/ volumen = kg/m3

Esto es debido a la relación de Peso, asi,

P = m · g existente entre masa y peso. 

No obstante, para referirse al peso por unidad de volumen la física ha introducido el concepto de peso específico Pe que se define como el cociente entre el peso P de un cuerpo y su volumen.

El peso específico representa la fuerza con que la Tierra atrae a un volumen unidad de la misma sustancia considerada.
Pe = P/v = peso/volumen = Newton/m3
La unidad del peso específico en el SI es el N/m3

La relación entre peso específico y densidad es la misma que la existente entre peso y masa. En efecto:
siendo g la aceleración de la gravedad.
Peso = P = m*g = masa*gravedad

Sustituimos P en la formula de Pe y tenemos que:
Pe = (m*g)/v = d*g = densidad por aceleración de la gravedad


Presión hidrostática

La presión hidrostática es un tipo de presión debida al peso de un fluido en reposo, en éste la única presión existente es la presión hidrostática. En un fluido en movimiento además puede aparecer una presión hidrodinámica relacionada con la velocidad del fluido.
Un fluido pesa y ejerce presión sobre las paredes, sobre el fondo del recipiente que lo contiene y sobre la superficie de cualquier objeto sumergido en él. Esta presión, llamada presión hidrostática provoca, en fluidos en reposo, una fuerza perpendicular a las paredes del recipiente o a la superficie del objeto sumergido sin importar la orientación que adopten las caras. Si el líquido fluyera, las fuerzas resultantes de las presiones ya no serían necesariamente perpendiculares a las superficies.





La inmensa mayoría de los materiales presentes en la Tierra se encuentran en estado fluido, ya sea en forma de líquidos o de gases. No sólo aparecen en dicho estado las sustancias que componen la atmósfera y la hidrosfera (océanos, mares, aguas continentales), sino también buena parte del interior terrestre. Por ello, el estudio de las presiones y propiedades hidrostáticas e hidrodinámicas tiene gran valor en el marco del conocimiento del planeta.

Los fluidos

Se denomina fluido a toda sustancia que tiene capacidad de fluir. En esta categoría se encuadran los líquidos y los gases, que se diferencian entre sí por el valor de su densidad, que es mayor en los primeros. La densidad se define como el cociente entre la masa de un cuerpo y el volumen que ocupa:
La densidad es un valor escalar y sus unidades son kg/m3 en el Sistema Internacional.

Propiedades de los fluidos

Los gases y los líquidos comparten algunas propiedades comunes. Sin embargo, entre estas dos clases de fluidos existen también notables diferencias:
  • Los gases tienden a ocupar todo el volumen del recipiente que los contiene, mientras que los líquidos adoptan la forma de éste pero no ocupan la totalidad del volumen.
  • Los gases son compresibles, por lo que su volumen y densidad varían según la presión; los líquidos tienen volumen y densidad constantes para una cierta temperatura (son incompresibles).
  • Las moléculas de los gases no interaccionan físicamente entre sí, al contrario que las de los líquidos; el principal efecto de esta interacción es la viscosidad.

Presión hidrostática

Dado un fluido en equilibrio, donde todos sus puntos tienen idénticos valores de temperatura y otras propiedades, el valor de la presión que ejerce el peso del fluido sobre una superficie dada es:
siendo p la presión hidrostática, r la densidad del fluido, g la aceleración de la gravedad y h la altura de la superficie del fluido. Es decir, la presión hidrostática es independiente del líquido, y sólo es función de la altura que se considere.
Por tanto, la diferencia de presión entre dos puntos A y B cualesquiera del fluido viene dada por la expresión:
La diferencia de presión hidrostática entre dos puntos de un fluido sólo depende de la diferencia de altura que existe entre ellos.

Principio de Pascal. Prensa hidráulica

En un fluido en equilibrio, la presión ejercida en cualquiera de sus puntos se transmite con igual intensidad en todas las direcciones. Esta ley, denominada Principio de Pascal, tiene múltiples aplicaciones prácticas y constituye la base teórica de laprensa hidráulica.
Esquema de una prensa hidráulica: un recipiente relleno de líquido con dos émbolos de distinta superficie.
Al aplicar una fuerza F1 sobre el primer émbolo, se genera una presión en el fluido que se transmite hacia el segundo émbolo, donde se obtiene una fuerza F2. Como la presión es igual al cociente entre la fuerza y la superficie, se tiene que:
Como S2 > S1, la fuerza obtenida en el segundo émbolo es mayor que la que se ejerce en el primero. Por ello, con una prensa hidráulica es posible alzar grandes pesos aplicando fuerzas pequeñas o moderadas.

Empuje de los cuerpos sumergidos

La presión que ejerce un fluido sobre las paredes del recipiente que lo contiene y la frontera de los cuerpos sumergidos en él produce en éstos una fuerza ascensional llamada empuje.
Por tanto, en un cuerpo sumergido actúan dos fuerzas de sentido contrario: el peso descendente y el empuje ascendente.
Si el empuje es mayor que el peso, el cuerpo sale a flote; en caso contrario, se hunde.

Principio de Arquímedes

Todo cuerpo completamente sumergido desaloja un volumen de fluido igual a su propio volumen. En condiciones de equilibrio, un cuerpo sumergido en un fluido experimenta una fuerza de empuje vertical ascendente que es igual al volumen de líquido desalojado. Este enunciado se conoce como Principio de Arquímedes, y se expresa como:
donde rf es la densidad del fluido, Vc el volumen del líquido desalojado (volumen de cuerpo sumergido) y g la gravedad.

Hidrostática

La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de reposo; es decir, sin que existan fuerzas que alteren su movimiento o posición.
x
Agua de mar: fluido salobre.
Reciben el nombre de fluidos aquellos cuerpos que tienen la propiedad de adaptarse a la forma del recipiente que los contiene. A esta propiedad se le da el nombre de fluidez.
Son fluidos tanto los líquidos como los gases, y su forma puede cambiar fácilmente por escurrimiento debido a la acción de fuerzas pequeñas.
Los principales teoremas que respaldan el estudio de la hidrostática son elprincipio de Pascal y el principio de Arquímedes.

Principio de Pascal

En física, el principio de Pascal es una ley enunciada por el físico y matemático francés Blaise Pascal (1623-1662).
El principio de Pascal afirma que la presión aplicada sobre un  fluido no compresible contenido en un recipiente indeformable se transmite con igual intensidad en todas las direcciones y a todas partes del recipiente.
Este tipo de fenomeno se puede apreciar, por ejemplo en la prensa hidráulica la cual funciona aplicando este principio.
Definimos compresibilidad como la capacidad que tiene un fluido para disminuir el volumen que ocupa al ser sometido a la acción de fuerzas.
x
Sistema hidráulico para elevar pesos.

Principio de Arquímedes

El principio de Arquímedes afirma que todo cuerpo sólido sumergido total o parcialmente en un fluido experimenta un empuje vertical y hacia arriba con una fuerza  igual al peso del volumen de fluido desalojado.
El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y estará sumergido sólo parcialmente.

Propiedades de los fluidos

Las propiedades de un fluido son las que definen el comportamiento y características del mismo tanto en reposo como en movimiento.
Existen propiedades primarias y propiedades secundarias del fluido.

Propiedades primarias o termodinámicas:
Densidad
Presión
x
Definimos viscosidad como la mayor o menor dificultad para el deslizamiento entre las partículas de un fluido.
Temperatura
Energía interna
Entalpía
Entropía
Calores específicos

Propiedades secundarias
Caracterizan el comportamiento específico de los fluidos.
Viscosidad
Conductividad térmica
Tensión superficial
Compresión

Densidad o masa específica
x
Densidad de fluidos: cantidad de masa por volumen.
La densidad es la cantidad de masa por unidad de volumen. Se denomina con la letra ρ. En el sistema internacional se mide en kilogramos / metro cúbico.
Cuando se trata de una sustancia homogénea, la expresión para su cálculo es:
hidrostatica001
Donde
ρ: densidad de la sustancia, Kg/m3
m: masa de la sustancia, Kg
V: volumen de la sustancia, m3
en consecuencia la unidad de densidad en el Sistema Internacional será kg/m3 pero es usual especificar densidades en g/cm3, existiendo la equivalencia
1g cm3 = 1.000 kg/ m3.
La densidad de una sustancia varía con la temperatura y la presión; al resolver cualquier problema debe considerarse la temperatura y la presión a la que se encuentra el fluido. 
Peso específico

x
Presión hidrostática.
El peso específico de un fluido se calcula como su peso por unidad de volumen (o su densidad por g).
En el sistema internacional se mide en Newton / metro cúbico.
hidrostatica002


Presión hidrostática
En general, podemos decir que la presión se define como fuerza sobre unidad de superficie, o bien que la presión es la magnitud que indica cómo se distribuye la fuerza sobre la superficie en la cual está aplicada.

x
Si una superficie se coloca en contacto con un fluido en equilibrio (en reposo) el fluido, gas o líquido, ejerce fuerzas normales sobre la superficie.
Entonces, presión hidrostática, en mecánica, es la fuerza por unidad de superficie que ejerce un líquido o un gas perpendicularmente a dicha superficie.
Si la fuerza total (F) está distribuida en forma uniforme sobre el total de un área horizontal (A), la presión (P) en cualquier punto de esa área será
hidrostatica003
P: presión ejercida sobre la superficie, N/m2
F: fuerza perpendicular a la superficie, N
A: área de la superficie donde se aplica la fuerza, m2
x
Mismo nivel, misma presión.
Ahora bien, si tenemos dos recipientes de igual base conteniendo el mismo líquido (figura a la izquierda) , veremos que el nivel del líquido es el mismo en los dos recipientes y la presión ejercida sobre la base es la misma.
x
Presión solo sobre la base.
Eso significa que:
La presión es independiente del tamaño de la sección de la columna: depende sólo de su altura (nivel del líquido) y de la naturaleza del líquido (peso específico).
Esto se explica porque la base sostiene sólo al líquido que está por encima de ella, como se grafica con las líneas punteadas en la figura a la derecha.
La pregunta que surge naturalmente es: ¿Qué sostiene al líquido restante?
Y la respuesta es: Las paredes del recipiente. El peso de ese líquido tiene una componente aplicada a las paredes inclinadas.
La presión se ejerce solo sobre la base y la altura o nivel al cual llega el líquido indica el equilibrio con la presión atmosférica.
Ver: PSU: Física; Pregunta 13_2005(2)
Presión y profundidad
La presión en un fluido en equilibrio aumenta con la profundidad, de modo que las presiones serán uniformes sólo en superficies planas horizontales en el fluido.
Por ejemplo, si hacemos mediciones de presión en algún fluido a ciertas profundidades la fórmula adecuada es
hidrostatica004
Es decir, la presión ejercida por el fluido en un punto situado a una profundidad h de la superficie es igual al producto de la densidadd del fluido, por la profundiad h y por la aceleración de la gravedad.
Si consideramos que la densidad del fluido permanece constante, la presión, del fluido dependería únicamente de la profundidad. Pero no olvidemos que hay fluidos como el aire o el agua del mar, cuyas densidades no son constantes y tendríamos que calcular la presión en su interior de otra manera.
Unidad de Presión
En el sistema internacional la unidad es el Pascal (Pa) y equivale a Newton sobre metro cuadrado.
hidrostatica005

La presión suele medirse en atmósferas (atm); la atmósfera se define como 101.325 Pa, y equivale a 760 mm de mercurio o 14,70 lbf/pulg2 (denominada psi).
La tabla siguiente define otras unidades y se dan algunas equivalencias.
UnidadSímboloEquivalencia
barbar1,0 × 105 Pa
atmósferaatm101.325 Pa  1,01325 bar  1013,25 mbar
mm de mercuriommHg133.322 Pa
Torrtorr133.322 Pa
lbf/pulg2psi0,0680 atm
kgf/cm20,9678 atm
atm760,0 mmHg
psi6.894, 75 Pa

Medidores de presión
xx
Manómetro común.
La mayoría de los medidores de presión, o manómetros, miden la diferencia entre la presión de un fluido y la presión atmosférica local.
Para pequeñas diferencias de presión se emplea un manómetro que consiste en un tubo en forma de U con un extremo conectado al recipiente que contiene el fluido y el otro extremo abierto a la atmósfera.
El tubo contiene un líquido, como agua, aceite o mercurio, y la diferencia entre los niveles del líquido en ambas ramas indica la diferencia entre la presión del recipiente y la presión atmosférica local.
Para diferencias de presión mayores se utiliza el manómetro de Bourdon, llamado así en honor al inventor francés Eugène Bourdon. Este manómetro está formado por un tubo hueco de sección ovalada curvado en forma de gancho.
Los manómetros empleados para registrar fluctuaciones rápidas de presión suelen utilizar sensores piezoeléctricos o electrostáticos que proporcionan una respuesta instantánea.
Como la mayoría de los manómetros miden la diferencia entre la presión del fluido y la presión atmosférica local, hay que sumar ésta última al valor indicado por el manómetro para hallar la presión absoluta. Una lectura negativa del manómetro corresponde a un vacío parcial.